Opposition Based ElectromagnetismLike for Global Optimization

نویسندگان

  • Erik Valdemar Cuevas Jiménez
  • Diego Oliva
  • Daniel Zaldivar
  • Marco A. Pérez Cisneros
  • Gonzalo Pajares
چکیده

Electromagnetism-like Optimization (EMO) is a global optimization algorithm, particularly well-suited to solve problems featuring non-linear and multimodal cost functions. EMO employs searcher agents that emulate a population of charged particles which interact with each other according to electromagnetism’s laws of attraction and repulsion. However, EMO usually requires a large number of iterations for a local search procedure; any reduction or cancelling over such number, critically perturb other issues such as convergence, exploration, population diversity and accuracy. This paper presents an enhanced EMO algorithm called OBEMO, which employs the Opposition-Based Learning (OBL) approach to accelerate the global convergence speed. OBL is a machine intelligence strategy which considers the current candidate solution and its opposite value at the same time, achieving a faster exploration of the search space. The proposed OBEMO method significantly reduces the required computational effort yet avoiding any detriment to the good search capabilities of the original EMO algorithm. Experiments are conducted over a comprehensive set of benchmark functions, showing that OBEMO obtains promising performance for most of the discussed test problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elite Opposition-based Artificial Bee Colony Algorithm for Global Optimization

 Numerous problems in engineering and science can be converted into optimization problems. Artificial bee colony (ABC) algorithm is a newly developed stochastic optimization algorithm and has been widely used in many areas. However, due to the stochastic characteristics of its solution search equation, the traditional ABC algorithm often suffers from poor exploitation. Aiming at this weakness o...

متن کامل

STATIC AND DYNAMIC OPPOSITION-BASED LEARNING FOR COLLIDING BODIES OPTIMIZATION

Opposition-based learning was first introduced as a solution for machine learning; however, it is being extended to other artificial intelligence and soft computing fields including meta-heuristic optimization. It not only utilizes an estimate of a solution but also enters its counter-part information into the search process. The present work applies such an approach to Colliding Bodies Optimiz...

متن کامل

Differential evolution algorithms using hybrid mutation

Differential evolution [1] has gained a lot of attention from the global optimization research community. It has proved to be a very robust algorithm for solving non-differentiable and nonconvex global optimization problems. In this paper, we propose some modifications to the original algorithm. Specifically, we use the attraction-repulsion concept of electromagnetismlike algorithm [2, 3] to bo...

متن کامل

Solving Large Scale Optimization Problems by Opposition-Based Differential Evolution (ODE)

This work investigates the performance of Differential Evolution (DE) and its opposition-based version (ODE) on large scale optimization problems. Opposition-based differential evolution (ODE) has been proposed based on DE; it employs opposition-based population initialization and generation jumping to accelerate convergence speed. ODE shows promising results in terms of convergence rate, robus...

متن کامل

Elite Opposition-Based Social Spider Optimization Algorithm for Global Function Optimization

Abstract: The Social Spider Optimization algorithm (SSO) is a novel metaheuristic optimization algorithm. To enhance the convergence speed and computational accuracy of the algorithm, in this paper, an elite opposition-based Social Spider Optimization algorithm (EOSSO) is proposed; we use an elite opposition-based learning strategy to enhance the convergence speed and computational accuracy of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1405.5172  شماره 

صفحات  -

تاریخ انتشار 2012